Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters








Language
Year range
1.
Acta Physiologica Sinica ; (6): 149-154, 2012.
Article in Chinese | WPRIM | ID: wpr-335929

ABSTRACT

Endoplasmic reticulum (ER) stress occurs in macrophage-rich areas of advanced atherosclerotic lesions and contributes to macrophage apoptosis and subsequent plaque necrosis. The purpose of the present study was to investigate the effects of caveolin-1 (Cav-1) on ER stress-induced apoptosis in cultured macrophages and the underlying mechanisms. RAW264.7 cells were incubated with thapsigargin (TG) to establish ER stress model. And Cav-1 expression was detected by Western blot. After being pretreated with filipin(III), a caveolae inhibitor, RAW264.7 cells were assayed with flow cytometry and confocal laser scanning microscopy to detect cell apoptosis. Moreover, p38 mitogen-activated protein kinase (MAPK) phosphorylation and C/EBP homologous protein (CHOP) expression were detected with Western blot. The results showed that Cav-1 expression was markedly increased at early stage of TG treatment (P < 0.05) and then decreased with prolonged or high dose TG treatments. The increasing of Cav-1 expression induced by TG in RAW264.7 cells was abolished under inhibition of caveolae by filipin(III) (P < 0.05). The effect of TG on apoptosis of RAW264.7 cells was further augmented after pretreatment with filipin(III) (P < 0.05). Western blotting showed that MAPK phosphorylation induced by TG was inhibited by filipin(III) in RAW264.7 cells (P < 0.05), whereas CHOP remained unchanged (P > 0.05). These results suggest that Cav-1 may play a critical role in suppressing ER stress-induced macrophages apoptosis in vitro, and one of the mechanisms may be correlated with the activation of p38 MAPK prosurvival pathway.


Subject(s)
Animals , Mice , Apoptosis , Caveolin 1 , Genetics , Metabolism , Cell Line , Endoplasmic Reticulum Stress , Physiology , Filipin , Pharmacology , MAP Kinase Signaling System , Macrophages , Cell Biology , Thapsigargin , Pharmacology , Transcription Factor CHOP , Metabolism , p38 Mitogen-Activated Protein Kinases , Metabolism
2.
Virologica Sinica ; (4): 316-325, 2007.
Article in Chinese | WPRIM | ID: wpr-634603

ABSTRACT

lacZα-mini-attTn7 was inserted into the intergenic region between the gG and gD genes in a PRV bacterial artificial chromosome (BAC) by homologous recombination in E. coli. The resulting recombinant BAC (pBeckerZF1) was confirmed by PCR and sequencing. Green fluorescent protein (GFP) gene was then transposed into pBeckerZF1 by transposon Tn7 to generate pBeckerZF2. Recombinant viruses vBeckerZF1 and vBeckerZF2 were generated by transfection with the corresponding BAC pBeckerZF1 or pBeckerZF2. The titers and cytopathic effect (CPE) observed for by vBeckerZF1 and vBeckerZF2 was comparable to that of the parental virus vBecker3. vBeckerZF2 was serial passaged for five rounds in cell culture, and the mini-Tn7 insertion was stably maintained in viral genome. These results show that recombinant viruses can be rapidly and reliably created by Tn7-mediated transposition. This technology should accelerate greatly the pace at which recombinant PRV can be generated and, thus, facilitate the use of recombinant viruses for detailed mutagenic studies.

SELECTION OF CITATIONS
SEARCH DETAIL